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Abstract We discuss the effects of non-trivial boundary
conditions or backgrounds, including non-perturbative ones,
on the renormalization program for systems in two dimen-
sions. We present an alternative renormalization procedure
in which these non-perturbative conditions can be taken into
account in a self-contained and, we believe, self-consistent
manner. These conditions have profound effects on the prop-
erties of the system, in particular all of its n-point functions.
To be concrete, we investigate these effects in the λφ4 model
in two dimensions and show that the mass counterterms turn
out to be proportional to the Green’s functions which have
a non-trivial position dependence in these cases. We then
compute the difference between the mass counterterms in
the presence and absence of these conditions. We find that in
the case of non-trivial boundary conditions this difference is
minimum between the boundaries and infinite on them. The
minimum approaches zero when the boundaries go to infin-
ity. In the case of non-trivial backgrounds, we consider the
kink background and show that the difference is again small
and localized around the kink.

1 Introduction

The procedure of the renormalization with no non-trivial
backgrounds or boundary conditions is standard and has
been available for over half a century [1]. However, there
have been much less investigations done on the renormal-
ization programs for systems which are subject to non-trivial
boundary conditions or include non-trivial backgrounds [2],
including non-perturbative ones such as solitary waves or
solitons [3]. It is worth mentioning that for the purposes of
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this paper the distinction between the solitary waves and
solitons is unimportant and we use them interchangeably.
The usual renormalization procedure for systems with such
non-perturbative conditions has been either identical to the
analogous free cases or has included slight modifications
(see for example [4–11]). An important example for the case
of non-trivial boundary conditions is the calculation of ra-
diative corrections to the Casimir effect. In this case some
authors have used free renormalization programs in which
the counterterms are directly imported from the free cases
or at most supplemented with delta functions on the bound-
aries [12]. An important example for the case of non-trivial
backgrounds is the calculation of quantum corrections to the
mass of solitons. In this case the predominant practice has
been to use the free renormalization procedure. The main
issue that we want to discuss in this paper is that the pres-
ence of these non-perturbative conditions has profound ef-
fects on all physical properties of the system and the ensu-
ing renormalization procedure. That is, these conditions are
an integral part of the overall structure and properties of the
theory and obviously cannot be ignored or even taken into
account perturbatively. In fact, we believe that the solution
to the problem could be self-contained and the renormaliza-
tion procedure could be done self-consistently considering
the nature of the problem.

An additional justification supporting our proposed meth-
od is the fact that the presence of these non-perturbative con-
ditions break the translational symmetry of the system. For
example, in the presence of a soliton this occurs when we
fix the position of the solitons. Obviously the breaking of
the translational symmetry has many manifestations. Most
importantly, all the n-point functions of the theory will have
in general a non-trivial position dependence in the coordi-
nate representation. The procedure to deduce the countert-
erms from the n-point functions in a renormalized pertur-
bation theory is standard. This, as we shall show, will lead

mailto:amohammadi@shirazu.ac.ir
mailto:ss-gousheh@sbu.ac.ir


586 Eur. Phys. J. C (2008) 56: 585–590

to uniquely defined position dependent counterterms, which
need to be fixed only at one spatial point. Therefore, the
radiative corrections to all the input parameters of the the-
ory will be in general position dependent. Therefore, we be-
lieve that the information on the non-trivial boundary con-
ditions or position dependent backgrounds is carried by the
full set of n-point functions, the resulting counterterms, and
the renormalized parameters of the theory.

In this paper we set up alternative renormalized pertur-
bation theories for the φ4 model in two dimensions for two
different cases. First, we consider φ4 theory with Dirichlet
boundary conditions. One of the most important application
of such a theory is the calculation of the radiative correc-
tions of the Casimir effect. Second, we consider φ4 theory
in the spontaneously broken symmetry phase with the sta-
tic solitary wave (the kink) as the background. The most
common use of this theory is the calculation of the quan-
tum corrections to the mass of the kink. We calculate the
mass counterterms in these cases. In both cases we shall
inevitably obtain position dependent counterterms. For the
first one, our results show that the main difference between
the counterterms in the presence and absence of boundary
conditions is for positions which are about a Compton wave-
length away from the walls, although it has a small value at
other places. When the boundaries go to infinity, our coun-
terterm approaches the free one supplemented by delta func-
tions at the boundaries. This is precisely the modified coun-
terterm chosen by [5–8] for all values of the distance be-
tween the plates. In this sense, we believe, the counterterm
that the authors of this reference chose is only an approxi-
mation to ours. In the second case, we explicitly show that
the difference between our mass counterterm in the presence
of the kink and the free one is small and is localized around
the central position of the kink.

2 The counterterms in the presence of boundary
conditions

In this section we present our alternative approach to the
renormalization of a scalar field confined between two
points in two space–time dimensions. The Lagrangian den-
sity for a real scalar field with φ4 self-interaction is

L(x) = 1

2

[
∂μϕ(x)

]2 − 1

2
m2

0ϕ(x)2 − λ0

4! φ(x)4, (1)

where m0 and λ0 are the bare mass and bare coupling con-
stant, respectively. The Lagrangian after rescaling the field
by φ = Z1/2φr , where Z is called the field strength renor-
malization, and invoking the standard procedure for setting
up the renormalized perturbation theory, becomes (see for
example [13, 14])

L(x) = 1

2

[
∂μφr(x)

]2 − 1

2
m2φr(x)2 − λ

4!φr(x)4

+ 1

2
δZ

[
∂μφr(x)

]2 − 1

2
δm2φr(x)2 − δλ

4! φr(x)4,(2)

where δm2, δλ and δZ are the counterterms, and m and λ are
the physical mass and physical coupling constant, respec-
tively. We should mention that in these 1 + 1 dimensional
problems, one usually chooses a minimal renormalization
scheme defined at all loops by [9–11]

δZ = 0, δλ = 0 and m2
0 = m2 − δm2. (3)

The sufficiency of these conditions is supported by the fact
that for any theory of a scalar field in two dimensions with
non-derivative interactions, all divergences that occur in any
order of perturbation theory can be removed by normal-
ordering the Hamiltonian [15]. Complete calculations of all
the counterterms in higher dimensions are obviously more
complicated and will not be attempted here.

In this problem we are to impose appropriate boundary
conditions on the field at the end points. Obviously the pres-
ence of non-trivial boundary conditions breaks the transla-
tional invariance and hence momenta will no longer be good
quantum numbers. Therefore, we find it easier to impose the
renormalization conditions in configuration space. For ex-
ample, the standard expression for the two-point function in
the renormalized perturbation theory is

〈Ω|T {
φ(x1)φ(x2)

}|Ω〉

= lim
T →∞(1−iε)

〈0| ∫ Dφφ(x1)φ(x2)e
i
∫ T
−T L(x)d4x |0〉

〈0| ∫ Dφei
∫ T
−T L(x)d4x |0〉

. (4)

Since the birth of quantum field theory, as far as we know,
the assertion has always been that the above expressions can
be expanded systematically when the problem is amenable
to perturbation theory. For example, in the context of renor-
malized perturbation theory, as indicated in (2), we can sym-
bolically represent the first few terms of the perturbation ex-
pansion of (4) by

(5)

where refers to the appropriate counterterm. It
is obvious that the above expression represents a system-
atic perturbation expansion, and most importantly, all of the
propagators on the right hand side should be the ones ap-
propriate to the problem under consideration. That is, they
should have the same overall functional form as the first
term. An integral over space–time is implicitly assumed in
the above expression, and the final result is obviously x-
independent. Our first renormalization condition is equiv-
alent to the usual one, which states that the exact propagator
should equal the propagator represented by the first term in
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(5) close to its pole. This implies that the second and third
diagrams should cancel each other in the lowest order, and
this in turn implies the cancellation of the UV divergences to
that order. The presence of a space–time integral clouds the
central issue at this point. However, considering the higher
order diagrams, one can easily conclude that the cancella-
tion of the two aforementioned terms should occur locally.
This implies that the counterterms will in general turn out to
be position dependent. Therefore, we have

(6)

Here G(x,x′) is the propagator of the real scalar field and
x = (t, z). Obviously the counterterms automatically incor-
porate the boundary conditions and are position dependent,
due to the dependence of the two- and four-point functions
on such quantities. An interesting point is that if the propa-
gator for the loop part of (5) is taken to be the free propa-
gator, i.e. the one with no non-trivial boundary conditions,
then the counterterm will turn out to be exactly the free one.
However, we have reservations about this procedure. That
is, we believe that a self-contained and self-consistent pro-
cedure is one in which all of the propagator segments of the
above expansion are of the same form, i.e. the one repre-
sented by the first diagram. This is strengthened by the sym-
metry breaking argument presented in the introduction. Con-
sequently the exact functional dependence of δm2(x) can
be completely determined by the theory. That is, the over-
all structure of the renormalization conditions such as above
and the counterterms appearing in them could be determined
solely from within the theory, and there is no need, for exam-
ple, to import them from the free case. The significance of
the difference between the counterterms can be illuminated
by the following relationship:

m2
0 = m2

free − δm2
free = m2

bound − δm2
bound. (7)

It is extremely important to mention that it is sufficient to fix
mbound only at one value of x.

Now we study very briefly the specific effects of confine-
ment of the system to a finite size by imposing a Dirichlet
boundary condition. In order to do this we have to compare
the difference between the counterterms of free space and
the ones bounded in the interval [− a

2 , a
2 ]:

δm2
bound(x) − δm2

free = −λ

2

[
Gbound(x, x) − Gfree(x, x)

]
. (8)

For the free space we have Gfree(x, x′) = ∫ d2k

(2π)2
e−ik(x−x′)
k2−m2+iε

,
which in Euclidean space leads to

Gfree(x, x) =
∫

dω

2π

∫
dk

2a

1

ω′2 + k2π2

a2

= 1

4π

∫
dω

ω′ , (9)

where ω′2 = ω2 + m2. For the bounded problem we have
the following expression for the Green’s function in the two
dimensional Euclidean space:

Gbound(x, x′) = 2

a

∫
dω

2π
eω(t ′−t)

×
∑

n

sin[kn(z + a
2 )] sin[kn(z

′ + a
2 )]

ω′2 + k2
n

, (10)

where kn = nπ
a

is the momentum perpendicular to the plates.
Setting x′ = x and using some trigonometric identities, we
get

δm2
bound(x) − δm2

free

= −λ

8aπ

∫
dω

{
aω′ coth(aω′) − 1

ω′2

− 2
∞∑

n=1

cos[2kn(z + a
2 )]

ω′2 + k2
n

− a

ω′

}
. (11)

The summation term in the above equation can be written in
terms of hypergeometric functions as follows:

∞∑

n=1

cos[2kn(z + a
2 )]

ω′2 + k2
n

= iae− 2iπz
a

4ω′(π2 + a2ω′2)

×
{
(iaω′ − π)

[

2F1

(
1,1 + iaω′

π
,2 + iaω′

π
,−e− 2iπz

a

)

+ e
4iπz

a 2F1

(
1,1 + iaω′

π
,2 + iaω′

π
,−e

2iπz
a

)]

+ (iaω′ + π)

[

2F1

(
1,1 − iaω′

π
,2 − iaω′

π
,−e− 2iπz

a

)

+ e
4iπz

a 2F1

(
1,1 − iaω′

π
,2 − iaω′

π
,−e

2iπz
a

)]}
. (12)

It is important to note that the counterterm for the bounded
case has only a logarithmic ultraviolet divergence, while
the free one has an additional infrared divergence in the
massless case. The ultraviolet divergences exactly cancel
each other for all cases, while the infrared divergence in
the massless case remains. The resulting difference between
the counterterms, (11), is illustrated in Fig. 1 for m = 1;
a = 1 (m−1) and λ = 0.1 (m2), where ‘m’ appearing in
the parentheses denotes the unit of mass. This figure shows
that the difference between the counterterms in the free and
bounded cases is minimum in the middle of the plates, and
infinite on the plates. It is interesting to note that, for m �= 0,
as a → ∞, this difference approaches zero for all finite z.
We can compare our results with [5–8], in which the authors
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Fig. 1 The difference between the counterterms for the λφ4 Dirich-
let problem: δm2

bound(x) − δm2
free, for mass m = 1; a = 1 (m−1) and

λ = 0.1 (m2). Please, note that this difference is significant only close
to the boundaries. At the boundaries this difference diverges logarith-
mically. When the plate separation goes to infinity this difference ap-
proaches zero for all finite z

attempt to include finite size effects in their renormalization
procedure. The counterterm which they use is just the free
counterterm between the plates and delta functions on the
plates for all plate separations. This is identical to what we
have only in the limit of infinite plate separation. We believe
the counterterm that we have obtained within our theory is
the one which is appropriate to this problem and their coun-
terterm is only an approximation to ours. We have obtained
the first order radiative correction to the Casimir energy us-
ing our counterterm [16, 17].

3 The counterterms in the presence of non-trivial
backgrounds

In this section we study the counterterms appropriate for
problems with non-trivial backgrounds. One interesting
background is the φ4 kink. This background has non-trivial
boundary values as well as non-trivial spatial variations. We
start with the Lagrangian density for a neutral massive scalar
field, within φ4 theory, appropriate for the spontaneously
broken symmetry phase in 1 + 1 dimensions:

L = 1

2

(
∂φ

∂t

)2

− 1

2

(
∂φ

∂z

)2

− U
[
φ(x)

]
, (13)

where U [φ] = λ′
0

4 (φ2 − μ2
0

λ′
0
)2 and λ′

0 = λ0/6. As is well

known [10], the Euler–Lagrange equation can be easily ob-
tained and is a second order nonlinear PDE with the follow-
ing solutions: two non-topological static solutions φvac. =:
v0 = ±μ0/

√
λ′

0, and two topological static ones φkink(z) =
±μ0/

√
λ′

0 tanh[μ0(z − z0)/
√

2]. These are called kink and

antikink solutions, respectively. The presence of an arbitrary

z0 is a manifestation of the translational invariance of the
system, and this will lead to a zero mode. However, as men-
tioned before, fixing z0 will break that symmetry. In order to
find the quantum corrections to this mass, we have to make a
functional Taylor expansion of the potential about the static
solutions, which yields the stability equation,

[
−∇2 + d2U

dφ2

∣∣∣∣
φstatic(z)

]
η(x) = ω2η(x), (14)

where we have defined φ = φstatic + η and ω2 = k2 + 2μ2
0.

The results in the trivial sector are the continuum states
η(x) = exp(ikx). In the kink sector we have the following
two localized states and continuum states for the transparent
potential in (14) [18]:

η0(z
′) =

√
3m0

8

1

cosh2 z′ ,

ηB(z′) =
√

3m0

4

sinh z′

cosh2 z′ ,

ηq(z
′) = eiqz′

Nq

[−3 tanh2 z′ + 1 + q2 + 3iq tanh z′], (15)

where m0 = μ0/
√

2, ω2
0 = 0 is for our zero mode, ω2

B =
3
4m2

0 is for our only bound state, and ω2
q = m2

0(
q2

4 + 1) are

for the continuum states. Here N2
q = 16

ω2
q

m4
0
(ω2

q − ω2
B) and

z′ = m0z/2.
Now we calculate the mass counterterm in the kink sec-

tor by expanding the Lagrangian, which includes the mass
counterterm, around the kink background. However, we can
set up a more general problem by the following expansion:

φ(z, t) → y(z) + η(z, t) = m0√
2λ′

0

tanh

[
m0

2
z

]
+ η(z, t),

where y(z) can be any of the static solutions, for example
the kink solution as indicated above. Then the Lagrangian
which includes the mass counterterm becomes

L = 1

2
(∂μφ)2 + 1

2

(
m2 − δm2)φ2 − λ′

4
φ4 − (m2 − δm2)2

4λ′

= 1

2
(∂μη)2 +

(
1

2
m2 − 3

2
λ′y2

)
η2 − λ′yη3 − 1

4
λ′η4

+ δm2yη − 1

2
δm2η2 − 1

2
(∂μy)2 + 1

2

(
m2 − δm2)y2

− 1

4
λ′y4 − (m2 − δm2)2

4λ′

+ (
m2y − λ′y3 + ∂μy∂μ

)
η. (16)
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Note that the last term in the above equation, which is pro-
portional to η, vanishes exactly after an integration by parts
and using the equation of motion. Therefore, the condition
of setting the tadpole equal to zero simply becomes

(17)

Accordingly, up to first order in λ we obtain

iδm2(z, t)y(z) = 1

2

[−iλy(z)
]
G(z, t; z, t),

where G(z, t; z′, t ′) is the propagator for the particular prob-
lem under investigation. We finally obtain the following gen-
eral result, which is also obtained in the previous section
using analogous general arguments but a slightly different
method:

δm2(z, t) = −λ

2
G(z, t; z, t). (18)

Note that the counterterms in general naturally turn out to
be position dependent. Since G(z, t; z′, t ′) is uniquely de-
termined by the nature of the problem, so is δm2(z, t) via
(18). We do not expect any time dependence for the coun-
terterms when the system is time translation invariant. The
Green’s function for this problem in the presence of a kink
is

G(z, t; z′, t ′)

= i
∫

dω

2π
eiω(t−t ′)

×
(

∑

n�=0

η∗
n(z)ηn(z

′)
ω2

n − ω2
+

∫
dk

η∗
k (z)ηk(z

′)
ω2

k − ω2

)

, (19)

where the sum indicates the contributions of the bound states
and the integral the continuum states. Note that the zero
mode is neglected since it is only a manifestation of the
translational invariance of the system and is to be treated as
a collective coordinate [10, 19]. The above equation, when
the two space–time points are set equal and the ω integration
is performed, becomes

G(z, t; z, t) = −η2
B(z)

2ωB
−

∫
dk

2π

|ηk(z)|2
2ωk

. (20)

Calculating this integral is very cumbersome, but we can use
an interesting relationship which is the local version of the
completeness relation [20–22]:

∣
∣ηk(z)

∣
∣2 = 1 − m

ω2
k − ω2

B

η2
B(z) − 2m

ω2
k

η2
0(z). (21)

Fig. 2 The difference between the counterterms for the φ4 kink prob-
lem: δm2

kink(z) − δm2
free, with mass m = 1 and λ = 0.1 (m2). Note that

this difference is very small and localized at z = 0, the central position
of the kink

Using the above equation, the Green’s function is easily
computable by performing simple integrals. Putting (21)
into (20) and using (18), the mass counterterm in the kink
background becomes

δm2
kink(z) = λ

6
√

3m
η2

B(z) − λ

2πm
η2

0(z)

+ λ

8π

∫ ∞

−∞
dk

1√
k2 + m2

, (22)

which, as expected before, is different from the mass coun-
terterm in the trivial sector, i.e. the last term in (23). In fact,
it has extra finite z-dependent terms due to the presence of
the localized states, and obviously this difference tends to
zero as z → ±∞. An alternative reasoning is that the kink
solution also tends to either of the trivial vacuum states as
z → ±∞. Therefore, the difference between the countert-
erms becomes

δm2
kink(z) − δm2

free = λ

6
√

3m
η2

B(z) − λ

2πm
η2

0(z). (23)

Note that the zero mode appears in the above expression due
to the completeness relationship, (23). However, it does not
appear in the Green’s function or the field quantization. Fig-
ure 2 illustrates this difference for m = 1 and λ = 0.1 (m2),
where m denotes the mass of the scalar particle. We have
computed the Casimir energy for this system using this pro-
cedure [23].

4 Conclusions

In this paper we have studied the effects of non-trivial
boundary conditions or backgrounds on the renormaliza-
tion program for a given system in two dimensions. In
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general these two non-perturbative conditions on the sys-
tem are non-perturbative effects. In the case of non-trivial
backgrounds the effect is certainly non-perturbative when
the boundary conditions at the infinities are altered, e.g. in
the presence of solitons. We have insisted that the renor-
malization program could completely take into account
the boundary conditions or any possible non-trivial back-
grounds which break the translational invariance of the sys-
tem. We have shown that the problem can be self-contained
and the above program is accomplishable. To be more spe-
cific, we believe that in principle there is no need to import
counterterms from the free theory, or even to supplement
them with the ad hoc attachment of extra surface terms, to
remedy the divergences inherent in this theory. In general,
this breaking of the translational invariance is reflected in the
non-trivial position dependence of all the n-point functions.
As we have shown, this could have profound consequences.
For example, in the case of renormalized perturbation the-
ory, the counterterms and hence the radiative corrections to
the parameters of the theory, i.e. m and λ, automatically turn
out to be position dependent in our approach. In particu-
lar, we have calculated the mass counterterms for both the
non-trivial boundary conditions and non-trivial background
cases and computed and plotted their differences with the
free case in Figs. 1 and 2. We have used this renormaliza-
tion program to compute the Casimir energies in some cases
[16, 17, 23].
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